Activity-dependent expression of Egr1 mRNA in somatosensory cortex of developing rats.
نویسندگان
چکیده
The rat barrel field in somatosensory cortex is a well-characterized model of neocortical development, with activity-dependent and activity-independent components. Egr1 encodes an inducible transcription factor that is required for certain forms activity-dependent plasticity. This study examines Egr1 mRNA expression in the developing barrel field under basal conditions and after short-term deprivation or stimulation of whiskers. Egr1 mRNA was measured with in situ hybridization at postnatal Day (P) 6, P9, P12, P15, and P21. For short-term deprivation, whiskers were trimmed close to the skin and Egr1 mRNA was examined 3 hr later. For controlled stimulation of a single whisker, surrounding whiskers were trimmed, a wire was glued to the designated whisker, and animals were placed in an AC magnetic field pulsed at 2 Hz, 10 mT rms for 15 min. Egr1 mRNA was examined 30 min later. At P6, basal Egr1 mRNA in the barrel field was very low and was increased only slightly by stimulation (P < 0.05). At each of the later ages, there was a large increase in Egr1 mRNA in stimulated versus deprived barrels (P < 0.001). Egr1 mRNA expression after whisker stimulation increased exponentially with age through P15 (P < 0.001) and then declined between P15 and P21. The onset of Egr1 responses to whisker stimulation at P9 and the striking increase in activity-dependent Egr1 mRNA expression in the second postnatal week suggest that this transcription factor may play a role in activity-dependent processes that occur in this developmental period, such as maturation of barrel cortex circuitry.
منابع مشابه
Neuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats
Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...
متن کاملExperience-dependent plasticity of mouse visual cortex in the absence of the neuronal activity-dependent marker egr1/zif268.
Neuronal activity elicits a rapid increase in the expression of several immediate early genes (IEGs). To clarify a role for IEG response in activity-dependent development, we examined the contribution of the egr1/zif268 gene during visual cortical processing and plasticity in mice. We first analyzed the expression of egr1 mRNA in wild-type (WT) mice using Northern blot hybridization. In the vis...
متن کاملEffects of administration of histamine and its H1, H2, and H3 receptor antagonists into the primary somatosensory cortex on inflammatory pain in rats
Objective(s): The present study investigated the effects of microinjection of histamine and histamine H1, H2, and H3 receptor antagonists, chlorpheniramine, ranitidine and thioperamide, respectively into the primary somatosensory cortex (PSC) on inflammatory pain. Material and Methods: Two stainless steel guide canulas were bilaterally implanted into the PSC of anaesthetized rats. Inf...
متن کاملEffects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats
Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...
متن کاملEffect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex
Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience research
دوره 78 2 شماره
صفحات -
تاریخ انتشار 2004